Dépôt DSpace/Université Larbi Tébessi-Tébessa

Classification of Normal /Abnormal Heart Sound Recordings

Afficher la notice abrégée

dc.contributor.author AOUN Fatima, ZERIFI Razika
dc.date.accessioned 2024-09-20T20:59:33Z
dc.date.available 2024-09-20T20:59:33Z
dc.date.issued 2024-06-09
dc.identifier.uri http//localhost:8080/jspui/handle/123456789/11914
dc.description.abstract In this project, we address the medical field related to the cardiovascular system and heart diseases. Our objective is to develop a solution based on artificial intelligence techniques, in particular those of Machine Learning, in the form of an intelligent diagnostic support system to detect heartbeat anomalies using the dataset of the 2016 PhysioNet/CinC Challenge. For this we apply techniques for extracting temporal characteristics from PCG signals. In order to train the model to recognize heart sounds, we used various algorithms such as Random Forest, KNN and SVM. The results obtained are very satisfactory with an accuracy score of 92% and demonstrate the effectiveness and reliability of our intelligent system, which aims to be a diagnostic aid tool for health practitioners. en_US
dc.language.iso en en_US
dc.publisher Université de Echahid Cheikh Larbi Tébessi –Tébessa- en_US
dc.subject CAD, AI, Machine Learning, SVM, Random Forest, KNN, PCG; heartbeat en_US
dc.title Classification of Normal /Abnormal Heart Sound Recordings en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée