Dépôt DSpace/Université Larbi Tébessi-Tébessa

Reproducing Kernel Hilbert Space Method For Solving Fractional Integro-Differential Systems

Afficher la notice abrégée

dc.contributor.author KRAIDIA, Isra
dc.date.accessioned 2025-10-20T08:16:00Z
dc.date.available 2025-10-20T08:16:00Z
dc.date.issued 2025-06-03
dc.identifier.uri http//localhost:8080/jspui/handle/123456789/13357
dc.description.abstract This dissertation develops an efficient numerical method for solving fractional integro differential systems involving the Caputo fractional derivative. The proposed approach employs the Reproducing Kernel Hilbert Space (RKHS) method to construct ap proximate solutions expressed as uniformly convergent series, ensuring both high accuracy and rapid convergence. Numerical examples demonstrate the effectiveness and precision of the RKHS method in addressing complex fractional systems. The results reveal the significant impact of the fractional derivative order on the qualitative behavior of the solu tions, underscoring the importance of fractional calculus in modeling memory-dependent phenomena. This study establishes the RKHS method as a robust and promising tool for the numerical analysis of fractional systems. Future work may extend this framework to incorporate other types of fractional derivatives, higher-dimensional problems, and systems with more intricate initial and boundary conditions en_US
dc.language.iso en en_US
dc.publisher University of Echahid Cheikh Larbi Tébessi -Tébessa en_US
dc.title Reproducing Kernel Hilbert Space Method For Solving Fractional Integro-Differential Systems en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée