Dépôt DSpace/Université Larbi Tébessi-Tébessa

Limitit cycles for certain differential systems formed by hamiltonian systems

Afficher la notice abrégée

dc.contributor.author MOUELLAH, Boumediene
dc.date.accessioned 2025-10-28T10:58:37Z
dc.date.available 2025-10-28T10:58:37Z
dc.date.issued 2025-06-02
dc.identifier.uri http//localhost:8080/jspui/handle/123456789/13413
dc.description.abstract In this work, we show a new way of using the averaging theory of first order for studying families of periodic orbits in the extension of the Van der Pol oscillator to a Hamiltonian system of the form (1 ) , 2 , (1 ) , , 2 2 y y x y x y p x x p p y xyp y p x y x p                   where px and py are the conjugate momenta of the variables x and y , respectively and  is a small parameter. In the second part of this work, we provide the maximum number of limit cycles for continuous and discontinuous planar piecewise differential systems formed by linear Hamiltonian saddles and separated either by one or two parallel straight lines. en_US
dc.language.iso en en_US
dc.publisher University of Echahid Cheikh Larbi Tébessi -Tébessa en_US
dc.subject Hamiltonian system, Van der Pol oscillator, Periodic orbit, Differential system, Averaging theory. en_US
dc.title Limitit cycles for certain differential systems formed by hamiltonian systems en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée