Dépôt DSpace/Université Larbi Tébessi-Tébessa

Existence of solutions for a Kirchhoff hyperbolic problems in bounded domains

Afficher la notice abrégée

dc.contributor.author Bentata, Fatima Ezahra
dc.date.accessioned 2026-01-21T10:16:49Z
dc.date.available 2026-01-21T10:16:49Z
dc.date.issued 2025-12-11
dc.identifier.uri http//localhost:8080/jspui/handle/123456789/13780
dc.description.abstract This study is dedicated to investigating the existence of weak solutions for hyperbolic Kirchhoff-type problems, considering cases both with and without volume constraints and free boundaries. We employ the hyperbolic discrete Morse flow, which transforms the original problem into a sequence of mini- mization problems defined at discrete time intervals. This process ensures the existence of a minimizer for the discretized functional, which corresponds to the solution of the discretized problem and subsequently provides a weak so- lution to the original problem. The non-local terms arising from the Kirchhoff component, volume constraint, and free boundary condition present significant challenges that require innovative methods to tackle. These complexities are a key focus of our research. Furthermore, we present numerical simulations to better illustrate our results’ physical implications. en_US
dc.language.iso en en_US
dc.publisher University Echahid Cheikh Larbi Tebessi- Tebessa- en_US
dc.subject Hyperbolic Kirchhoff type problem, Free boundary, Volume constraint, Weak solution, Discrete Morse flow, Numerical simulation en_US
dc.title Existence of solutions for a Kirchhoff hyperbolic problems in bounded domains en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte