Dépôt DSpace/Université Larbi Tébessi-Tébessa

The stability study of a Gierer-Meinhardt system

Afficher la notice abrégée

dc.contributor.author GASMI, Leila
dc.contributor.author KHEMAISSIA, Afaf
dc.date.accessioned 2022-03-10T10:35:48Z
dc.date.available 2022-03-10T10:35:48Z
dc.date.issued 2017
dc.identifier.uri http//localhost:8080/jspui/handle/123456789/1956
dc.description.abstract In this work, we study the Turing patterns appearing in a Gierer-Meinhardt model of the activator-inhibitor type with di§erent sources. First, we investigate the corresponding kinetic equations and derive the conditions for the stability of the equilibrium and then, we turn our attention to the Hopf bifurcation of the system. In certain parameter range, the equilibrium experiences a Hopf bifurcation; the bifurcation is supercritical and the bifurcated periodic solution is stable. With added di§usions, we show that both the equilibrium and the stable Hopf periodic solution experience Turing instability, if the di§usion coe¢ cients of the two species are su¢ ciently di§erent. And we prove the global existence in time of the solutions of this system. en_US
dc.description.sponsorship ABDELMALEK Salem en_US
dc.language.iso en en_US
dc.publisher Larbi Tbessi University – Tebessa en_US
dc.title The stability study of a Gierer-Meinhardt system en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée